vignettes/SpatialExperiment.Rmd
SpatialExperiment.RmdThe 10X Genomics’ CellRanger pipeline will process data using standard output file formats that are saved, for each sample, in a single directory /<sample>/outs/ of the following structure:
sample
|—outs
··|—raw/filtered_feature_bc_matrix.h5
··|—raw/filtered_feature_bc_matrix
····|—barcodes.tsv
····|—features.tsv
····|—matrix.mtx
··|—spatial
····|—tissue_hires_image.png
····|—tissue_lowres_image.png
····|—detected_tissue_image.jpg
····|—aligned_fiducials.jpg
····|—scalefactors_json.json
····|—tissue_positions_list.csvThe SpatialExperiment package provides an exemplary 10X Visium spatial gene expression data of two serial mouse brain sections (Sagittal-Posterior) available from the 10X Genomics website. These are located in the extdata/10xVisium directory:
dir <- system.file(
file.path("extdata", "10xVisium"),
package = "SpatialExperiment")
sample_ids <- c("section1", "section2")
samples <- file.path(dir, sample_ids)We can load these data into a SpatialExperiment using the read10xVisium() function, which will read in all relevant information, including the count data, spatial coordinates, scale factors, and images:
list.files(samples[1])## [1] "raw_feature_bc_matrix.h5" "spatial"
list.files(file.path(samples[1], "spatial"))## [1] "scalefactors_json.json" "tissue_lowres_image.png"
## [3] "tissue_positions_list.csv"
(ve <- read10xVisium(samples, sample_ids,
images = "lowres", # specify which image(s) to include
load = TRUE)) # specify whether or not to load image(s)## class: SpatialExperiment
## dim: 32285 9984
## metadata(2): Samples Samples
## assays(1): counts
## rownames(32285): ENSMUSG00000051951 ENSMUSG00000089699 ...
## ENSMUSG00000095019 ENSMUSG00000095041
## rowData names(1): symbol
## colnames(9984): AAACAACGAATAGTTC-1 AAACAAGTATCTCCCA-1 ...
## TTGTTTGTATTACACG-1 TTGTTTGTGTAAATTC-1
## colData names(7): Barcode sample_id ... array_row array_col
## reducedDimNames(0):
## altExpNames(0):
## spatialCoordsNames(5) : x_coord y_coord in_tissue array_row array_col
## inTissue(1): 6710
## imgData(6): sample_id image_id ... height scaleFactor
SpatialExperiment classSpatial data are stored as observation metadata (colData) and include:
sample_id specifying unique sample identifiersin_tissue indicating whether an observation was mapped to tissuex/y_coord storing spatial coordinatesarray_row/col giving the spots’ row/column coordinate in the array1
A DataFrame of spatially-related data can be accessed using the spatialCoords() accessor:
```r
head(spatialCoords(ve))
```
```
## DataFrame with 6 rows and 5 columns
## x_coord y_coord in_tissue array_row array_col
## <integer> <integer> <logical> <integer> <integer>
## AAACAACGAATAGTTC-1 1419 2534 FALSE 0 16
## AAACAAGTATCTCCCA-1 7409 8455 TRUE 50 102
## AAACAATCTACTAGCA-1 1778 4393 FALSE 3 43
## AAACACCAATAACTGC-1 8487 2740 TRUE 59 19
## AAACAGAGCGACTCCT-1 3096 7905 TRUE 14 94
## AAACAGCTTTCAGAAG-1 6570 2052 TRUE 43 9
```
Alternatively, we can access these data using colData() or, even simpler, the $ accessor:
```r
# tabulate number of spots mapped to tissue
table(
in_tissue = ve$in_tissue,
sample_id = ve$sample_id)
```
```
## sample_id
## in_tissue section1 section2
## FALSE 1637 1637
## TRUE 3355 3355
```
Image-related data are stored in the int_metadata’s imgData field as a DataFrame with the following columns:
sample_id and image_id specifying the image’s sample and image identifierdata: a list of SpatialImages containing the image’s grob, path and/or URLwidth and height giving the image’s dimension (in pixel)scaleFactor used to rescale spatial coordinates according to the image’s resolutionWe can retrieve these data using the imgData() accessor:
imgData(ve)## DataFrame with 2 rows and 6 columns
## sample_id image_id data width height scaleFactor
## <character> <character> <list> <integer> <integer> <numeric>
## 1 section1 lowres 600 600 0.0516351
## 2 section2 lowres 600 600 0.0516351
SpatialImage classImages inside a SpatialExperiment’s imgData are stored as objects of class SpatialImage. These contain three slots that can accommodate any available information associated with an image:
* `@grob`: NULL or an object class `rastergrob` from the `grid` package
@path: NULL or a character strings specifying an image file name (.png, .jpg or .tif)@url: NULL or a character string specifying an URL from which to retrieve the imageA list of SpatialImages can be retrieved from the imgData’s data field using the $ accessor:
imgData(ve)$data## [[1]]
## A SpatialImage with 2 source(s):
## > loaded
## grob: Av
## path: /usr/local/lib/R/site-library/SpatialExperiment/ex
## tdata/10xVisium/section1/spatial/tissue_lowres_ima
## ge.png
## url: NA
##
## [[2]]
## A SpatialImage with 2 source(s):
## > loaded
## grob: Av
## path: /usr/local/lib/R/site-library/SpatialExperiment/ex
## tdata/10xVisium/section2/spatial/tissue_lowres_ima
## ge.png
## url: NA
Data available in an object of class SpatialImage may be accessed via the imgGrob(), imgPath() and imgUrl() accessors:
## rastergrob[GRID.rastergrob.11]
imgPath(si)## [1] "/usr/local/lib/R/site-library/SpatialExperiment/extdata/10xVisium/section1/spatial/tissue_lowres_image.png"
imgUrl(si)## NULL
grobs can be used directly for plotting (e.g. using grid.draw() or ggplot2’s layer() and annotation_custom()):
```r
si <- imgData(ve)$data[[1]]
grid.draw(imgGrob(si))
```
<img src="/__w/EuroBioc2020_SpatialWorkshop/EuroBioc2020_SpatialWorkshop/docs/articles/SpatialExperiment_files/figure-html/unnamed-chunk-10-1.png" width="700" />
path and url provide the option to store an image’s source at minimal storage cost. This is desirable when multiple images are to be stored (say, for many samples and of different resolutions), or when a SpatialExperiment is to be exported.
The SpatialExperiment package provides various functions to handle which and how image data is stored in the object. These include:
loadImg to actively load (an) image(s) from a path or URL and store it as a grob
unloadImg to drop the grob, while retaining the source path and/or URLaddImg to add a new image entry (as a path, URL, or grob)removeImg to drop an image entry entirelyloadImg() and add/removeImg() are flexible in the specification of the sample/image_id arguments. Specifically,
TRUE is equivalent to all, e.g. sample_id = "<sample>", image_id = TRUE will drop all images for a given sample.NULL defaults to the first entry available, e.g., sample_id = "<sample>", image_id = NULL will drop the first image for a given sample.For example, sample_id,image_id = TRUE,TRUE will specify all images; NULL,NULL corresponds to the first image entry in the imgData; TRUE,NULL equals the first image for all samples; and NULL,TRUE matches all images for the first sample.
In the example below, we unload all images, i.e., drop all grobs. As a result, grob slots will be set to NULL, and all SpatialImages now say > not loaded.
## [[1]]
## A SpatialImage with 1 source(s):
## > not loaded
## grob: NA
## path: /usr/local/lib/R/site-library/SpatialExperiment/ex
## tdata/10xVisium/section1/spatial/tissue_lowres_ima
## ge.png
## url: NA
##
## [[2]]
## A SpatialImage with 1 source(s):
## > not loaded
## grob: NA
## path: /usr/local/lib/R/site-library/SpatialExperiment/ex
## tdata/10xVisium/section2/spatial/tissue_lowres_ima
## ge.png
## url: NA
We can again reload a single or set of images using loadImg():
## [[1]]
## A SpatialImage with 1 source(s):
## > not loaded
## grob: NA
## path: /usr/local/lib/R/site-library/SpatialExperiment/ex
## tdata/10xVisium/section1/spatial/tissue_lowres_ima
## ge.png
## url: NA
##
## [[2]]
## A SpatialImage with 2 source(s):
## > loaded
## grob: Av
## path: /usr/local/lib/R/site-library/SpatialExperiment/ex
## tdata/10xVisium/section2/spatial/tissue_lowres_ima
## ge.png
## url: NA
Besides a path or URL to source the image from and a numeric scale factor, addImg() requires specification of the sample_id the new image belongs to, and an image_id that is not yet in use for that sample:
url <- "https://i.redd.it/3pw5uah7xo041.jpg"
ve <- addImg(ve,
sample_id = "section1", image_id = "pomeranian",
imageSource = url, scaleFactor = NA_real_, load = TRUE)## Warning in sprintf(" 'image_id' and 'sample_id'", dQuote(c(image_id,
## sample_id))): one argument not used by format ' 'image_id' and 'sample_id''
The above code chunk has added an new image entry in the input SpatialExperiment’s imgData field:
```r
imgData(ve)
```
```
## DataFrame with 3 rows and 6 columns
## sample_id image_id data width height scaleFactor
## <character> <character> <list> <integer> <integer> <numeric>
## 1 section1 lowres 600 600 0.0516351
## 2 section2 lowres 600 600 0.0516351
## 3 section1 pomeranian 1200 1186 NA
```

We can remove specific images with removeImg():
```r
ve <- removeImg(ve,
sample_id = "section1",
image_id = "pomeranian")
imgData(ve)
```
```
## DataFrame with 2 rows and 6 columns
## sample_id image_id data width height scaleFactor
## <character> <character> <list> <integer> <integer> <numeric>
## 1 section1 lowres 600 600 0.0516351
## 2 section2 lowres 600 600 0.0516351
```
colData replacementWhile storing of sample_ids, the in_tissue indicator, and spatial x/y_coords inside the SpatialExperiment’s colData enables direct accessibility via the colData and $ accessors, these fields are protected against arbitrary modification. This affects operations to the following effects:
Renaming is generally not permitted:
## Warning in .local(x, ..., value): cannot rename 'colData' fields 'x_coord',
## 'y_coord', 'in_tissue', 'array_row', 'array_col'
Replacement of sample_ids is permitted provided that
## Warning in .local(x, ..., value): Number of unique 'sample_id's is 2, but 3 were provided.
## Overwriting
## Warning in .local(x, ..., value): New 'sample_id's must map uniquely
Valid replacement will be propagated to the imgData:
tmp <- ve
i <- as.numeric(factor(ve$sample_id))
tmp$sample_id <- c("sample1", "sample2")[i]
imgData(tmp)## DataFrame with 2 rows and 6 columns
## sample_id image_id data width height scaleFactor
## <character> <character> <list> <integer> <integer> <numeric>
## 1 sample1 lowres 600 600 0.0516351
## 2 sample2 lowres 600 600 0.0516351
The x/y_coord and in_tissue fields may be modified provided that the former is a logical vector, and the latter is a two- or three-column numeric matrix:
ve$x_coord <- "x"
ve$in_tissue <- "x"## Warning in .local(x, ..., value): 'in_tissue' field in 'colData' should be
## 'logical'
colData() <- NULL will retain only required fields, i.e. sample_id, in_tissue and x/y_coord:
names(colData(ve))## [1] "Barcode" "sample_id" "x_coord" "y_coord" "in_tissue" "array_row"
## [7] "array_col"
colData(ve) <- NULL
names(colData(ve))## [1] "sample_id" "x_coord" "y_coord" "in_tissue" "array_row" "array_col"
array_rows range from 0-77 (78 rows); array_cols are even in 0-126 for even rows, and odd in 1-127 for odd rows (64 columns), giving in \(78 \times 64 = 4,992\) spots per sample.↩︎