As said, we will use the the wild-type data from the Tal1 chimera experiment:
Note that this is a paired design in which for each biological replicate (pool 3, 4, and 5), we have both host and injected cells.
We start by loading the data and doing a quick exploratory analysis, essentially applying the normalization and visualization techniques that we have seen in the previous lectures to all samples.
library(MouseGastrulationData)
sce <- WTChimeraData(type = "processed", samples=5:10)
sce
## class: SingleCellExperiment
## dim: 29453 20935
## metadata(0):
## assays(1): counts
## rownames(29453): ENSMUSG00000051951 ENSMUSG00000089699 ...
## ENSMUSG00000095742 tomato-td
## rowData names(2): ENSEMBL SYMBOL
## colnames(20935): cell_9769 cell_9770 ... cell_30702 cell_30703
## colData names(11): cell barcode ... doub.density sizeFactor
## reducedDimNames(2): pca.corrected.E7.5 pca.corrected.E8.5
## mainExpName: NULL
## altExpNames(0):
colData(sce)
## DataFrame with 20935 rows and 11 columns
## cell barcode sample stage tomato
## <character> <character> <integer> <character> <logical>
## cell_9769 cell_9769 AAACCTGAGACTGTAA 5 E8.5 TRUE
## cell_9770 cell_9770 AAACCTGAGATGCCTT 5 E8.5 TRUE
## cell_9771 cell_9771 AAACCTGAGCAGCCTC 5 E8.5 TRUE
## cell_9772 cell_9772 AAACCTGCATACTCTT 5 E8.5 TRUE
## cell_9773 cell_9773 AAACGGGTCAACACCA 5 E8.5 TRUE
## ... ... ... ... ... ...
## cell_30699 cell_30699 TTTGTCACAGCTCGCA 10 E8.5 FALSE
## cell_30700 cell_30700 TTTGTCAGTCTAGTCA 10 E8.5 FALSE
## cell_30701 cell_30701 TTTGTCATCATCGGAT 10 E8.5 FALSE
## cell_30702 cell_30702 TTTGTCATCATTATCC 10 E8.5 FALSE
## cell_30703 cell_30703 TTTGTCATCCCATTTA 10 E8.5 FALSE
## pool stage.mapped celltype.mapped closest.cell
## <integer> <character> <character> <character>
## cell_9769 3 E8.25 Mesenchyme cell_24159
## cell_9770 3 E8.5 Endothelium cell_96660
## cell_9771 3 E8.5 Allantois cell_134982
## cell_9772 3 E8.5 Erythroid3 cell_133892
## cell_9773 3 E8.25 Erythroid1 cell_76296
## ... ... ... ... ...
## cell_30699 5 E8.5 Erythroid3 cell_38810
## cell_30700 5 E8.5 Surface ectoderm cell_38588
## cell_30701 5 E8.25 Forebrain/Midbrain/H.. cell_66082
## cell_30702 5 E8.5 Erythroid3 cell_138114
## cell_30703 5 E8.0 Doublet cell_92644
## doub.density sizeFactor
## <numeric> <numeric>
## cell_9769 0.02985045 1.41243
## cell_9770 0.00172753 1.22757
## cell_9771 0.01338013 1.15439
## cell_9772 0.00218402 1.28676
## cell_9773 0.00211723 1.78719
## ... ... ...
## cell_30699 0.00146287 0.389311
## cell_30700 0.00374155 0.588784
## cell_30701 0.05651258 0.624455
## cell_30702 0.00108837 0.550807
## cell_30703 0.82369305 1.184919
To speed up computations, after removing doublets, we randomly select 50% cells per sample.
library(scater)
library(ggplot2)
library(scran)
# remove doublets
drop <- sce$celltype.mapped %in% c("stripped", "Doublet")
sce <- sce[,!drop]
set.seed(29482)
idx <- unlist(tapply(colnames(sce), sce$sample, function(x) {
perc <- round(0.50 * length(x))
sample(x, perc)
}))
sce <- sce[,idx]
We now normalize the data and visualize them in a tSNE plot.
# normalization
sce <- logNormCounts(sce)
# identify highly variable genes
dec <- modelGeneVar(sce, block=sce$sample)
chosen.hvgs <- dec$bio > 0
# dimensionality reduction
sce <- runPCA(sce, subset_row = chosen.hvgs, ntop = 1000)
sce <- runTSNE(sce, dimred = "PCA")
sce$sample <- as.factor(sce$sample)
plotTSNE(sce, colour_by = "sample")
plotTSNE(sce, colour_by = "celltype.mapped") +
scale_color_discrete() +
theme(legend.position = "bottom")
There are evident sample effects. Depending on the analysis that you want to perform you may want to remove or retain the sample effect. For instance, if the goal is to identify cell types with a clustering method, one may want to remove the sample effects with “batch effect” correction methods.
For now, let’s assume that we want to remove this effect.
We correct the effect of samples by aid of the
correctExperiment
function in the batchelor
package and using the sample
colData
column as
batch.
library(batchelor)
set.seed(10102)
merged <- correctExperiments(sce,
batch=sce$sample,
subset.row=chosen.hvgs,
PARAM=FastMnnParam(
merge.order=list(
list(1,3,5), # WT (3 replicates)
list(2,4,6) # td-Tomato (3 replicates)
)
)
)
merged <- runTSNE(merged, dimred="corrected")
plotTSNE(merged, colour_by="batch")
Once we removed the sample batch effect, we can proceed with the Differential Expression Analysis.
In order to perform a Differential Expression Analysis, we need to identify groups of cells across samples/conditions (depending on the experimental design and the final aim of the experiment).
As previously seen, we have two ways of grouping cells, cell clustering and cell labeling. In our case we will focus on this second aspect to group cells according to the already annotated cell types to proceed with the computation of the pseudo-bulk samples.
To compute differences between groups of cells, a possible way is to compute pseudo-bulk samples, where we mediate the gene signal of all the cells for each specific cell type. In this manner, we are then able to detect differences between the same cell type across two different conditions.
To compute pseudo-bulk samples, we use the
aggregateAcrossCells
function in the scuttle
package, which takes as input not only a SingleCellExperiment, but also
the id to use for the identification of the group of cells. In our case,
we use as id not just the cell type, but also the sample, because we
want be able to discern between replicates and conditions during further
steps.
# Using 'label' and 'sample' as our two factors; each column of the output
# corresponds to one unique combination of these two factors.
library(scuttle)
summed <- aggregateAcrossCells(merged,
id=colData(merged)[,c("celltype.mapped", "sample")])
summed
## class: SingleCellExperiment
## dim: 13641 179
## metadata(2): merge.info pca.info
## assays(1): counts
## rownames(13641): ENSMUSG00000051951 ENSMUSG00000025900 ...
## ENSMUSG00000096730 ENSMUSG00000095742
## rowData names(3): rotation ENSEMBL SYMBOL
## colnames: NULL
## colData names(15): batch cell ... sample ncells
## reducedDimNames(5): corrected pca.corrected.E7.5 pca.corrected.E8.5 PCA
## TSNE
## mainExpName: NULL
## altExpNames(0):
The main advantage of using pseudo-bulk samples is the possibility to
use well-tested methods for differential analysis like
edgeR
and DESeq2
, we will focus on the former
for this analysis. edgeR
uses a Negative Binomial
Generalized Linear Model.
First, let’s start with a specific cell type, for instance the “Mesenchymal stem cells”, and look into differences between this cell type across conditions.
label <- "Mesenchyme"
current <- summed[,label==summed$celltype.mapped]
# Creating up a DGEList object for use in edgeR:
library(edgeR)
y <- DGEList(counts(current), samples=colData(current))
y
## An object of class "DGEList"
## $counts
## Sample1 Sample2 Sample3 Sample4 Sample5 Sample6
## ENSMUSG00000051951 2 0 0 0 1 0
## ENSMUSG00000025900 0 0 0 0 0 0
## ENSMUSG00000025902 4 0 2 0 3 6
## ENSMUSG00000033845 765 130 508 213 781 305
## ENSMUSG00000002459 2 0 1 0 0 0
## 13636 more rows ...
##
## $samples
## group lib.size norm.factors batch cell barcode sample stage tomato pool
## Sample1 1 2478901 1 5 <NA> <NA> 5 E8.5 TRUE 3
## Sample2 1 548407 1 6 <NA> <NA> 6 E8.5 FALSE 3
## Sample3 1 1260187 1 7 <NA> <NA> 7 E8.5 TRUE 4
## Sample4 1 578699 1 8 <NA> <NA> 8 E8.5 FALSE 4
## Sample5 1 2092329 1 9 <NA> <NA> 9 E8.5 TRUE 5
## Sample6 1 904929 1 10 <NA> <NA> 10 E8.5 FALSE 5
## stage.mapped celltype.mapped closest.cell doub.density sizeFactor
## Sample1 <NA> Mesenchyme <NA> NA NA
## Sample2 <NA> Mesenchyme <NA> NA NA
## Sample3 <NA> Mesenchyme <NA> NA NA
## Sample4 <NA> Mesenchyme <NA> NA NA
## Sample5 <NA> Mesenchyme <NA> NA NA
## Sample6 <NA> Mesenchyme <NA> NA NA
## celltype.mapped.1 sample.1 ncells
## Sample1 Mesenchyme 5 151
## Sample2 Mesenchyme 6 28
## Sample3 Mesenchyme 7 127
## Sample4 Mesenchyme 8 75
## Sample5 Mesenchyme 9 239
## Sample6 Mesenchyme 10 146
A typical step is to discard low quality samples due to low sequenced library size. We discard these samples because they can affect further steps like normalization and/or DEGs analysis.
We can see that in our case we don’t have low quality samples and we don’t need to filter out any of them.
discarded <- current$ncells < 10
y <- y[,!discarded]
summary(discarded)
## Mode FALSE
## logical 6
The same idea is typically applied to the genes, indeed we need to discard low expressed genes to improve accuracy for the DEGs modeling.
keep <- filterByExpr(y, group=current$tomato)
y <- y[keep,]
summary(keep)
## Mode FALSE TRUE
## logical 9121 4520
We can now proceed to normalize the data There are several approaches
for normalizing bulk, and hence pseudo-bulk data. Here, we use the
Trimmed Mean of M-values method, implemented in the edgeR
package within the calcNormFactors
function. Keep in mind
that because we are going to normalize the pseudo-bulk counts, we don’t
need to normalize the data in “single cell form”.
y <- calcNormFactors(y)
y$samples
## group lib.size norm.factors batch cell barcode sample stage tomato pool
## Sample1 1 2478901 1.0506857 5 <NA> <NA> 5 E8.5 TRUE 3
## Sample2 1 548407 1.0399112 6 <NA> <NA> 6 E8.5 FALSE 3
## Sample3 1 1260187 0.9700083 7 <NA> <NA> 7 E8.5 TRUE 4
## Sample4 1 578699 0.9871129 8 <NA> <NA> 8 E8.5 FALSE 4
## Sample5 1 2092329 0.9695559 9 <NA> <NA> 9 E8.5 TRUE 5
## Sample6 1 904929 0.9858611 10 <NA> <NA> 10 E8.5 FALSE 5
## stage.mapped celltype.mapped closest.cell doub.density sizeFactor
## Sample1 <NA> Mesenchyme <NA> NA NA
## Sample2 <NA> Mesenchyme <NA> NA NA
## Sample3 <NA> Mesenchyme <NA> NA NA
## Sample4 <NA> Mesenchyme <NA> NA NA
## Sample5 <NA> Mesenchyme <NA> NA NA
## Sample6 <NA> Mesenchyme <NA> NA NA
## celltype.mapped.1 sample.1 ncells
## Sample1 Mesenchyme 5 151
## Sample2 Mesenchyme 6 28
## Sample3 Mesenchyme 7 127
## Sample4 Mesenchyme 8 75
## Sample5 Mesenchyme 9 239
## Sample6 Mesenchyme 10 146
To investigate the effect of our normalization, we use a Mean-Difference (MD) plot for each sample in order to detect possible normalization problems due to insufficient cells/reads/UMIs composing a particular pseudo-bulk profile.
In our case, we verify that all these plots are centered in 0 (on y-axis) and present a trumpet shape, as expected.
Furthermore, we want to check if the samples cluster together based on their known factors (like the tomato injection in this case).
To do so, we use the MDS plot, which is very close to a PCA representation.
We then construct a design matrix by including both the pool and the tomato as factors. This design indicates which samples belong to which pool and condition, so we can use it in the next step of the analysis.
design <- model.matrix(~factor(pool) + factor(tomato), y$samples)
design
## (Intercept) factor(pool)4 factor(pool)5 factor(tomato)TRUE
## Sample1 1 0 0 1
## Sample2 1 0 0 0
## Sample3 1 1 0 1
## Sample4 1 1 0 0
## Sample5 1 0 1 1
## Sample6 1 0 1 0
## attr(,"assign")
## [1] 0 1 1 2
## attr(,"contrasts")
## attr(,"contrasts")$`factor(pool)`
## [1] "contr.treatment"
##
## attr(,"contrasts")$`factor(tomato)`
## [1] "contr.treatment"
Now we can estimate the Negative Binomial (NB) overdispersion parameter, to model the mean-variance trend.
y <- estimateDisp(y, design)
summary(y$trended.dispersion)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.009325 0.016271 0.024233 0.021603 0.026868 0.027993
We then fit a Quasi-Likelihood (QL) negative binomial generalized
linear model for each gene. The robust=TRUE
parameter
avoids distortions from highly variable clusters. The QL method includes
an additional dispersion parameter, useful to handle the uncertainty and
variability of the per-gene variance, which is not well estimated by the
NB dispersion, so the two dispersion types complement each other in the
final analysis.
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.2977 0.6640 0.8275 0.7637 0.8798 0.9670
summary(fit$df.prior)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.323 8.177 8.177 8.111 8.177 8.177
We then use an empirical Bayes quasi-likelihood F-test to test for differential expression (due to tomato injection) per each gene at a False Discovery Rate (FDR) of 5%. The low amount of DGEs highlights that the tomato injection effect has a low influence on the mesenchyme cells.
res <- glmQLFTest(fit, coef=ncol(design))
summary(decideTests(res))
## factor(tomato)TRUE
## Down 5
## NotSig 4510
## Up 5
topTags(res)
## Coefficient: factor(tomato)TRUE
## logFC logCPM F PValue FDR
## ENSMUSG00000010760 -4.1551264 9.973704 1112.14948 9.905998e-12 4.477511e-08
## ENSMUSG00000096768 1.9992920 8.844258 403.85294 1.594095e-09 3.602655e-06
## ENSMUSG00000035299 1.8001627 6.904163 123.52980 5.130084e-07 7.729327e-04
## ENSMUSG00000101609 1.3708397 7.310009 80.58075 3.745290e-06 4.232177e-03
## ENSMUSG00000019188 -1.0195649 7.545530 61.65538 1.248303e-05 1.128466e-02
## ENSMUSG00000024423 0.9946833 7.391075 58.34967 1.591674e-05 1.199061e-02
## ENSMUSG00000086503 -6.5155131 7.411257 159.33690 2.625600e-05 1.695388e-02
## ENSMUSG00000042607 -0.9567347 7.468203 45.42154 4.690293e-05 2.650016e-02
## ENSMUSG00000036446 -0.8305889 9.401028 42.72058 6.071290e-05 3.049137e-02
## ENSMUSG00000027520 1.5814592 6.952923 40.94715 7.775888e-05 3.514702e-02
All the previous steps can be easily performed with the following
function for each cell type, thanks to the pseudoBulkDGE
function in the scran
package.
library(scran)
summed.filt <- summed[,summed$ncells >= 10]
de.results <- pseudoBulkDGE(summed.filt,
label=summed.filt$celltype.mapped,
design=~factor(pool) + tomato,
coef="tomatoTRUE",
condition=summed.filt$tomato
)
The returned object is a list of DataFrame
s each with
the results for a cell type. Each of these contains also the
intermediate results in edgeR
format to perform any
intermediate plot or diagnostic.
cur.results <- de.results[["Allantois"]]
cur.results[order(cur.results$PValue),]
## DataFrame with 13641 rows and 5 columns
## logFC logCPM F PValue FDR
## <numeric> <numeric> <numeric> <numeric> <numeric>
## ENSMUSG00000037664 -7.995130 11.55290 3180.990 7.35933e-22 3.09165e-18
## ENSMUSG00000010760 -2.574762 12.40592 1114.529 9.22901e-18 1.93855e-14
## ENSMUSG00000086503 -7.015319 7.49749 703.373 5.57372e-16 7.80507e-13
## ENSMUSG00000096768 1.828480 9.33239 304.769 8.39747e-13 8.81944e-10
## ENSMUSG00000022464 0.969837 10.28302 118.697 2.12502e-09 1.78544e-06
## ... ... ... ... ... ...
## ENSMUSG00000095247 NA NA NA NA NA
## ENSMUSG00000096808 NA NA NA NA NA
## ENSMUSG00000079808 NA NA NA NA NA
## ENSMUSG00000096730 NA NA NA NA NA
## ENSMUSG00000095742 NA NA NA NA NA
With DA we test for differences between clusters across conditions, to investigate which clusters change accordingly to the treatment (the tomato injection in our case).
We first setup some code and variables for further analysis, like quantifying the number of cells per each cell type and fit a model to catch differences between the injected cells and the background.
The performed steps are very similar to the ones for DEGs analysis, but this time we start our analysis on the computed abundances and without normalizing the data with TMM.
library(RColorBrewer)
n <- 68
qual_col_pals = brewer.pal.info[brewer.pal.info$category == 'qual',]
col_vector = unlist(mapply(brewer.pal, qual_col_pals$maxcolors, rownames(qual_col_pals)))
abundances <- table(merged$celltype.mapped, merged$sample)
abundances <- unclass(abundances)
abundances
##
## 5 6 7 8 9 10
## Allantois 52 7 69 64 154 134
## Blood progenitors 1 4 1 8 2 3 9
## Blood progenitors 2 20 4 13 9 21 52
## Cardiomyocytes 41 13 44 15 96 101
## Caudal epiblast 2 0 0 0 8 18
## Caudal Mesoderm 4 4 6 3 4 10
## Caudal neurectoderm 0 1 0 0 2 7
## Def. endoderm 5 2 7 5 14 11
## Endothelium 33 7 21 14 50 32
## Erythroid1 19 5 61 48 27 45
## Erythroid2 34 14 127 200 58 112
## Erythroid3 117 83 151 380 290 551
## ExE ectoderm 1 2 0 37 0 35
## ExE endoderm 0 1 0 1 0 3
## ExE mesoderm 62 23 102 75 93 155
## Forebrain/Midbrain/Hindbrain 130 78 96 84 171 351
## Gut 25 29 48 40 98 113
## Haematoendothelial progenitors 37 10 40 47 81 68
## Intermediate mesoderm 31 7 28 26 28 87
## Mesenchyme 151 28 127 75 239 146
## Mixed mesoderm 0 0 0 0 1 2
## Neural crest 12 12 37 36 41 178
## NMP 63 30 40 34 37 92
## Notochord 0 0 0 2 2 2
## Paraxial mesoderm 77 39 70 52 80 220
## Parietal endoderm 0 2 0 29 0 3
## PGC 0 1 5 3 2 6
## Pharyngeal mesoderm 58 16 84 76 136 169
## Rostral neurectoderm 18 9 5 5 31 45
## Somitic mesoderm 46 19 21 12 14 56
## Spinal cord 48 38 45 23 65 115
## Stripped 13 8 2 0 1 3
## Surface ectoderm 45 19 113 55 178 268
## Visceral endoderm 1 1 0 0 3 1
df <- as.data.frame(abundances)
df <- cbind(rowSums(df[,c(1, 3, 5)]), rowSums(df[, c(2, 4, 6)]))
colnames(df) <- c("tomato", "control")
# Create a df for barplot
ct <- rep(rownames(df), 2)
cond <- c(rep("tomato", dim(df)[1]), rep("control",dim(df)[1]))
value <- c(df[,1], df[,2])
df_barplot <- data.frame(ct, cond, value)
ggplot(df_barplot, aes(x=reorder(ct, -value), y=value, fill=cond))+
geom_bar(width=.5, stat='identity', position=position_dodge(.7)) +
theme_classic() +theme(axis.text.x = element_text(angle = 75, vjust = 1, hjust=1))+
labs(y="#Cells", x="")
# Barplot
ggplot(df_barplot, aes(y=value, x=cond, fill=ct, color=ct)) +
geom_bar(position="fill", stat="identity") +
scale_color_manual(values=col_vector)+
scale_fill_manual(values=col_vector) +
labs(y="Cell proportion(%)", x="", fill=NULL, color=NULL) +theme_classic()
library(edgeR)
abundances <- table(merged$celltype.mapped, merged$sample)
abundances <- unclass(abundances)
# Attaching some column metadata.
extra.info <- colData(merged)[match(colnames(abundances), merged$sample),]
y.ab <- DGEList(abundances, samples=extra.info)
keep <- filterByExpr(y.ab, group=extra.info$tomato)
y.ab <- y.ab[keep,]
design <- model.matrix(~factor(pool) + factor(tomato), y.ab$samples)
y.ab <- estimateDisp(y.ab, design, trend="none")
fit.ab <- glmQLFit(y.ab, design, robust=TRUE, abundance.trend=FALSE)
As mentioned before, in DA we don’t normalize our data with
calcNormFactors
function, because this approach considers
that most of the input features do not vary between conditions. This
cannot be applied to this analysis because we have a small number of
cell populations that all can change due to the treatment. Leaving us to
normalize only for library depth, which in pseudo-bulk data means by the
total number of cells in each sample (cell type).
On the other hand, this can lead our data to be susceptible to compositional effect, that means that our conclusions can be biased by the amount of cells present in each cell type. And this amount of cells can be totally unbalanced between cell types.
For example, a specific cell type can be 40% of the total amount of cells present in the experiment, while another just the 3%. The differences in terms of abundance of these cell types are detected between the different conditions, but our final interpretation could be biased if we don’t consider this aspect.
We now look at one of the approaches for handling the compositional effect.
We can use a similar approach used during the DEGs analysis, assuming that most labels are not changing, in particular if we think about the low number of DEGs resulted from the previous analysis.
To do so, we first normalize the data with
calcNormFactors
and then we fit and estimate a QL-model for
our abundance data.
y.ab2 <- calcNormFactors(y.ab)
y.ab2$samples$norm.factors
## [1] 1.1510286 0.9866729 1.1042093 0.7722489 1.0457096 0.9874631
We then follow the already seen edgeR analysis steps.
y.ab2 <- estimateDisp(y.ab2, design, trend="none")
fit.ab2 <- glmQLFit(y.ab2, design, robust=TRUE, abundance.trend=FALSE)
res2 <- glmQLFTest(fit.ab2, coef=ncol(design))
summary(decideTests(res2))
## factor(tomato)TRUE
## Down 0
## NotSig 21
## Up 0
topTags(res2, n=10)
## Coefficient: factor(tomato)TRUE
## logFC logCPM F PValue
## Erythroid3 -0.9956036 17.35279 8.611516 0.005394638
## Neural crest -1.0917248 14.85476 7.461485 0.009177889
## Mesenchyme 0.8901738 16.31463 6.479534 0.014672428
## Endothelium 0.7921383 14.11509 3.411336 0.071803077
## Erythroid2 -0.5895162 15.96667 2.591693 0.114916989
## Cardiomyocytes 0.6200248 14.93268 2.545840 0.118083259
## Allantois 0.5277110 15.54533 1.997632 0.164914229
## Forebrain/Midbrain/Hindbrain -0.4508956 16.56015 1.769367 0.190638748
## Paraxial mesoderm -0.4472657 15.77907 1.591961 0.214008619
## NMP -0.4256713 15.07249 1.306089 0.259577002
## FDR
## Erythroid3 0.09636783
## Neural crest 0.09636783
## Mesenchyme 0.10270700
## Endothelium 0.37696616
## Erythroid2 0.41329141
## Cardiomyocytes 0.41329141
## Allantois 0.49474269
## Forebrain/Midbrain/Hindbrain 0.49935344
## Paraxial mesoderm 0.49935344
## NMP 0.54511170
## R Under development (unstable) (2023-11-22 r85609)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.3 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] RColorBrewer_1.1-3 edgeR_4.1.2
## [3] limma_3.59.1 batchelor_1.19.0
## [5] scran_1.31.0 scater_1.31.1
## [7] ggplot2_3.4.4 scuttle_1.13.0
## [9] MouseGastrulationData_1.17.0 SpatialExperiment_1.13.0
## [11] SingleCellExperiment_1.25.0 SummarizedExperiment_1.33.0
## [13] Biobase_2.63.0 GenomicRanges_1.55.1
## [15] GenomeInfoDb_1.39.1 IRanges_2.37.0
## [17] S4Vectors_0.41.2 BiocGenerics_0.49.1
## [19] MatrixGenerics_1.15.0 matrixStats_1.1.0
## [21] BiocStyle_2.31.0
##
## loaded via a namespace (and not attached):
## [1] jsonlite_1.8.7 magrittr_2.0.3
## [3] ggbeeswarm_0.7.2 magick_2.8.1
## [5] farver_2.1.1 rmarkdown_2.25
## [7] fs_1.6.3 zlibbioc_1.49.0
## [9] ragg_1.2.6 vctrs_0.6.4
## [11] memoise_2.0.1 DelayedMatrixStats_1.25.1
## [13] RCurl_1.98-1.13 htmltools_0.5.7
## [15] S4Arrays_1.3.1 AnnotationHub_3.11.0
## [17] curl_5.1.0 BiocNeighbors_1.21.0
## [19] SparseArray_1.3.1 sass_0.4.7
## [21] bslib_0.6.1 desc_1.4.2
## [23] cachem_1.0.8 ResidualMatrix_1.13.0
## [25] igraph_1.5.1 mime_0.12
## [27] lifecycle_1.0.4 pkgconfig_2.0.3
## [29] rsvd_1.0.5 Matrix_1.6-3
## [31] R6_2.5.1 fastmap_1.1.1
## [33] GenomeInfoDbData_1.2.11 shiny_1.8.0
## [35] digest_0.6.33 colorspace_2.1-0
## [37] AnnotationDbi_1.65.2 rprojroot_2.0.4
## [39] dqrng_0.3.1 irlba_2.3.5.1
## [41] ExperimentHub_2.11.0 textshaping_0.3.7
## [43] RSQLite_2.3.3 beachmat_2.19.0
## [45] labeling_0.4.3 filelock_1.0.2
## [47] fansi_1.0.5 httr_1.4.7
## [49] abind_1.4-5 compiler_4.4.0
## [51] bit64_4.0.5 withr_2.5.2
## [53] BiocParallel_1.37.0 viridis_0.6.4
## [55] DBI_1.1.3 highr_0.10
## [57] rappdirs_0.3.3 DelayedArray_0.29.0
## [59] rjson_0.2.21 bluster_1.13.0
## [61] tools_4.4.0 vipor_0.4.5
## [63] beeswarm_0.4.0 interactiveDisplayBase_1.41.0
## [65] httpuv_1.6.12 glue_1.6.2
## [67] promises_1.2.1 grid_4.4.0
## [69] Rtsne_0.16 cluster_2.1.5
## [71] generics_0.1.3 gtable_0.3.4
## [73] metapod_1.11.0 BiocSingular_1.19.0
## [75] ScaledMatrix_1.11.0 utf8_1.2.4
## [77] XVector_0.43.0 ggrepel_0.9.4
## [79] BiocVersion_3.19.1 pillar_1.9.0
## [81] stringr_1.5.1 BumpyMatrix_1.11.0
## [83] later_1.3.1 splines_4.4.0
## [85] dplyr_1.1.4 BiocFileCache_2.11.1
## [87] lattice_0.22-5 bit_4.0.5
## [89] tidyselect_1.2.0 locfit_1.5-9.8
## [91] Biostrings_2.71.1 knitr_1.45
## [93] gridExtra_2.3 xfun_0.41
## [95] statmod_1.5.0 stringi_1.8.2
## [97] yaml_2.3.7 evaluate_0.23
## [99] codetools_0.2-19 tibble_3.2.1
## [101] BiocManager_1.30.22 cli_3.6.1
## [103] xtable_1.8-4 systemfonts_1.0.5
## [105] munsell_0.5.0 jquerylib_0.1.4
## [107] Rcpp_1.0.11 dbplyr_2.4.0
## [109] png_0.1-8 parallel_4.4.0
## [111] ellipsis_0.3.2 pkgdown_2.0.7
## [113] blob_1.2.4 sparseMatrixStats_1.15.0
## [115] bitops_1.0-7 viridisLite_0.4.2
## [117] scales_1.3.0 purrr_1.0.2
## [119] crayon_1.5.2 rlang_1.1.2
## [121] formatR_1.14 KEGGREST_1.43.0